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electron density between methoxy and phenoxy oxygens and 
the lengthening of two F 4  bridging bond distances from 2.05 
to 2.18 A are almost magnetically invisible since the meth- 
oxophenoxo- and the diphenoxo-bridged complexes show not 
significantly different J values. 

Whether or not the effects of the two longer Fe-0 bond 
distances and the reduced electron density in the Sale$- de- 
rivative are counterbalanced by other factors such as the effect 
of one larger bridging angle at  oxygen or the planarity of the 
bridging unit remains unknown. 

In summation, when it is considered collectively, the evi- 
dence of the properties of the three complexes does not indicate 
any unequivocal magnetostructural relationship. This result, 
although rather disappointing, is not totally surprising. Al- 
though the effects on the ordering of spin states of geometrical 
distortions and of substituent changes for a variety of Cu(I1) 
dimers could be accounted for7v8 by analyzing, in terms of 
pairwise interactions of dimeric MO’s, only the direct su- 
perexchange mechanism (coupling with ionic states), a very 
recent ab initio direct c a l ~ u l a t i o n ~ ~  of the singlet-triplet sep- 

aration in cupric acetate hydrate dimer has shown that at least 
other three essential contributions (whose dependence on 
structural changes in the system has still to be analyzed) must 
be considered in order to quantitatively understand the ob- 
served magnetic properties. The problem is easily predicted 
to be greatly complicated by the presence of five electrons per 
atom. 
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Conventional multiplet theory predicts a number of well-verified regularities for the spin-pairing energy in transition-metal 
ions. In the present work, these predictions are analyzed at  the Hartree-Fock level. It is shown that many regularities 
persist in the SCF wavefunctions and energies but that the interpretation of the results is quite different. The implications 
for other parts of multiplet theory and ligand field theory are briefly discussed. 

Introduction 
In ligand field theory, the formation of high-spin vs. low-spin 

transition-metal complexes is considered to result from the 
interplay of two opposing tendencies. On the one hand, the 
ligand field induces one-electron energy differences between 
the metal d orbitals; the larger these differences, the more the 
lower lying orbitals will tend to be fully occupied. On the other 
hand, the complete occupation of these orbitals and the cor- 
responding spin pairing is taken to be hindered by the larger 
repulsion, characterizing two electrons with opposite spins. The 
properties of the complex can be described by considering the 
balance of some typical one-electron ligand field parameter 
(lODq in octahedral complexes) and the so-called spin-pairing 
energy. Within the framework of the conventional multiplet 
theory,’ this spin-pairing energy is an interelectronic repulsion 
energy and can be expressed in terms of the Racah B and C 
parameters or alternatively in terms of the Slater-Condon 
integrals Fk. 

The most general treatment of the spin-pairing energy has 
been given by Jargemen* and Slater;3 on the basis of first-order 
perturbation theory, they show that, for any ndq configuration 

E(S)  = E(nd4) + [ S m )  - S(S + l ) ] D  

where E(nd4) is the weighted mean energy of the configuration, 
E(S)  is the weighted mean energy of the multiplets charac- 

(1) Slater, J. C. “Quantum Theory of Atomic Structures”; McGraw-Hill: 
New York, 1960; Vol. I. 

(2) Jmgensen, C. K. “Atomic Spectra and Chemical Bonding in 
Complexes”; Pergamon Press: Oxford, 1962. 

(3) Slater, J. C. Phys. Reu. 1968, 165, 655. 

terized by S spin quantum number, S(S + 1) corresponds to 
the average value of the total spin angular momentum, and 
D is a typical metal parameter. Therefore 

AE = E(S - 1) - E(S)  = 2SD (1) 

It is clear that AE provides the neatest way to describe the 
average effect of changing the spin of just one electron. For 
dq systems, where more than two multiplicities are possible 
( q  = 4-6) this means that 

S 
s - 1 

= -  
E(S - 1) - E ( S )  

E(S - 2) - E(S - 1) 

The relevant quantity is then AE/2S = D, the spin-pairing 
parameter; it is a measure for the energy required to change 
just two electrons from unpaired (tt) to paired (t i). For all 
ndq systems, D is given by one single parametric e x p r e s ~ i o n , ~ ~ ~  
eq 2. It can also be shown that D is proportional to  the 

D = 7/1*(5B + 2C) = 5/s4[p(nd;nd) + p(nd;nd)] (2) 

average exchange integral K,, of the dq system: D = ’I6Kav. 
Since the Racah repulsion parameters B and C are inher- 

ently positive, D and hE are also positive; therefore eq 1 goes 
some length toward the rationalization of Hund’s first rule. 

It is well-known that this first-order perturbation approach 
leads to very satisfactory results: nearly all the predictions 
of the classical multiplet theory are qualitatively and semi- 
quantitatively verified by extensive spectral data for nearly 
all the elements of the periodic system. 

Yet, for certain first-row atoms and ions, a detailed com- 
parison of first-order perturbation theory and SCF calculations 
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Table 1. Total Energy and Energy Components of the Five States, 
Corresponding to the Ti2', 3d' Iona 

(A) SCF Calculation for Each Individual State 

E' L' T'  H '  C' 

'F -847.731 -1998.045 847.731 -1150.314 302.583 
' D  -847.680 -1997.767 847.680 -1150.087 302.406 
3P -847.670 -1997.721 847.670 -1150.051 302.381 
' G  -847.652 -1997.614 847.652 -1149.962 302.309 
' S  -847.542 -1996.950 847.541 -1149.409 301.867 

(B) Calculations Based on the Frozen Orbitals of the SCF 
Average of Configuration 

E L T H C 

'F -847.731 302.4 17 
' D  -847.680 302.467 

'C -847.652 302.496 
' S  -847.536 302.61 1 

a All energies are in hartrees. E is the total energy, L is the elec- 
tron-nuclear attraction energy, T is the kinetic energy, H = L + T 
is the one-electron energy, C is the repulsion energy. The un- 
primed symbols refer to the frozen orbital approximation, while 
the primed symbols to the individual Hartee-Fock calculations. 

'P -847.670 -1997.840 847.693 -1150.147 302.478 

has revealed rather surprising results. For instance, both C 
and 02+ are characterized by a ground configuration 2p2, 
leading to 3P, 'D, and IS. First-order perturbation theory 
predicts that the interelectronic repulsion increases from 3P 
to 'D to IS. From SCF calculations, this result is verified for 
02+ but not for C, where the reverse order is obtained!" This 
surprising effect is not an artifact of the SCF calculations: it 
is completely confirmed by more exact  method^.^-^ 

In the light of these results it seems worthwhile to reexamine 
the picture offered by conventional multiplet theory. Does it 
remain true-at the SCF level-that the spin-pairing energy 
in transition-metal ions is basically an interelectronic repulsion 
effect, as implied by eq 1 and 2? So that this matter could 
be investigated, a number of numerical Hartree-Fock calcu- 
lations9J0 were carried out for di- and tripositive ions of the 
transition metals. 

A Simple Example: Ti2+ (3d2). Before considering the 
spin-pairing problem in general, it is instructive to look at  a 
simple example calculation. For the Ti2+ ion, a 3d2 system, 
separate SCF calculations were carried out for the five dif- 
ferent states 3F, ID, 3P, 'G,  and 'S individually; the results 
are shown in Table IA and Figure 1A. For comparison, we 
also carried out a Hartree-Fock calculation of the configu- 
ration average d2; using the frozen orbitals of this average, it 
is possible to obtain an alternative (and more approximate) 
value for the energies of the individual multiplets (L, S). These 
results are also shown in Table IB and Figure 1B. A calcu- 
lation of the latter type is in principle the best possible 
treatment within the framework of the conventional multiplet 
theory. 

The energy components are denoted as follows: L is the 
electron-nuclear attraction energy, C is the interelectronic 
repulsion energy, T is the kinetic energy, V is the potential 
energy, and H is the one-electron energy: E = T + L + C 
= T + V = H + C. The primed symbols E', T', etc. refer to 

(4) Davidson, E. R. J .  Chem. Phys. 1965, 42, 4199. 
(5) Messmer, R. P.; Birss, F. W. J. Phys. Chem. 1969, 73, 2085. Kohl, A. 

D. J. Chem. Phys. 1972,56,4236. Matsen, F. A. Ado. Quantum Chem. 
1964, 1 ,  59. 

(6) Katriel, J.; Pauncz, R. Ado. Quantum Chem. 1977, 10, 143 and refer- 
ences therein. . .. . .. . .. . . . .. . . 

(7) Katriel, J. Theor. Chim. Acta 1972, 23, 309. 
(8) Colpa, J. P.; Brown, R. E. Mol. Phys. 1973, 26, 1453. 
(9) Fischer, C. H. Comp. Phys. Commun. 1969, 1, 151. 

(10) Fischer, C. H. "The Hartree-Fock Method for Atoms"; Wiley-Inter- 
science: New York, 1977. 
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Figure 1. Total energy E (central part of the figure) and one-electron 
energy H = L + T (left- and right-hand side) of the five states, 
resulting from the 3d2 configurations of Ti2+: (A) SCF calculations 
for each individual state; (B) calculations based on the frozen orbitals 
of the SCF average of configuration (in hartree units). L is the 
electron-nuclear attraction energy, and T is the kinetic energy. 

direct Hartree-Fock results while the unprimed symbols are 
reserved for frozen-orbital calculations. 

Table IA and IB predict essentially the same total energy 
E E'. The relative values of E agree qualitatively with the 
available spectral data; the correct order is predicted in spite 
of the exchange correlation difference between singlets and 
triplets." Quantitatively, the energy differences are in error 
by -20%. 

The most striking point of Table IA is that the repulsion 
energy C' decreases from the lowest to the highest excited 
states; the 3F ground state is characterized by a larger in- 
terelectronic repulsion than any other state of the 3d2 con- 
figuration. This result is in obvious contradiction to the 
commonly accepted ideas on metal ion multiplets, which are 
exemplified in Table IB. The frozen-orbital calculation implies 
one common value of L and T for all multiplets, and therefore 
the energy difference between any two terms simply equals 
their repulsion difference. The 3F ground state is then of 
course calculated with the smallest value of C. 

One basic deficiency of the frozen-orbital calculations is that 
they cannot possibly provide a correct partition of the energy 
into its components: being based on first-order perturbation 
theory, they interpret A E  as a result of AVonly, leaving AT 
as 0-a procedure which clearly violates the virial theorem. 

The exact Hartree-Fock solutions of Table IA on the 
contrary do satisfy the virial theorem E' = -T', Therefore the 
3F ground state is also characterized by the largest kinetic 
energy. This implies that the electron-nuclear attraction L' 
and not the interelectronic repulsion C' is the decisive factor 
in determining the relative energy of the multiplets L'(3F) C 
L'('D) C L'('P) C L'('G) C L'(lS). 

(1 1) See also: Claydon, C. R.; Carlson, K. D. J .  Chem. Phys. 1968, 49, 1331. 
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Table 11. Hartree-Fock Spin-Pairing Energy D' = AE'/2S and Its Components for the Dipositive Transition-Metal Ions Vzt  
through Nizt (cm-')' 

Vanquickenborne and Haspeslagh 

(d') Tiz+ 
(d') Vz' 
(d4)Crz+ A 

B 
(ds)  Mnzt  A 

B 
(d6) Fezt A 

B 
(d') Coz+ 
(d*) Ni2+ 

D D' AL'/2S AT'/2S AC'I2S 

6459 
7017 
7554 
7554 
8076 
8076 
85 80 
8580 
9079 
9571 

6432 
7044 
7631 
75 15 
8199 
8079 
8630 
8556 
9089 
95 64 

35 853 
35 353 
35 342 
35 698 
35 627 
35 959 
36413 
36 601 
37 198 
38 006 

-6432 
-7045 
-7631 
-7514 
-8199 
-8078 
-8629 
-8557 
-9090 
-9564 

-22 989 
-21 264 
-20 080 
-20 669 
-19 229 
-19 802 
-19 154 
-19488 
-19 019 
-18878 

12283 
10800 
9705 
9702 
8853 
8842 
8149 
8138 
7560 
7058 

ActCd/2s 

-40 337 
-36 635 
-33 935 
-34 264 
-31 857 
-32 149 
-30457 
-30613 
-29 219 
-28 135 

AC'dd/2S 

5065 
4571 
4150 
3893 
3775 
3505 
3154 
2987 
2640 
2199 

a All A's refer to the energy for the smaller s value minus the energy for the large s value. AC'dd refers to the repulsion associated with the 
3dq occupation only, AC', to the intracore repulsion, and AC',d to the intershell repulsion between core and d electrons. For comparison, 
the first column shows D = AE/2S, calculated from the frozen orbitals of the configuration average. 

Figure 2. Evolution of the total energy E and the kinetic (7') and 
potential (v) components as a function of a scaling factor A. The 
virial theorem is satisfied for the minimum in E, where X = -V/2T. 
Increasing X corresponds to a contraction of the wave function, de- 
creasing X to an expansion. 

In Figure 1, these results are displayed in a slightly different 
way: the central part shows the total energies, and at  the two 
sides, we show the one-electron energies H or H'. While H 
is represented by one single level at  the right-hand side of the 
diagram, the H'range at the left-hand side is roughly five times 
larger than the E or E'ranges! The frozen-orbital calculations 
apparently neglect the larger effects and incorporate the E 
differences effectively into the smaller effects (the C varia- 
tions). 

Starting from the frozen-orbital calculation of any given 
multiplet, the exact Hartree-Fock solution can be obtained 
by allowing the orbitals to relax to their optimal shape. Al- 
though the total relaxation energy is virtually zero, the energy 
components do change significantly upon relaxation. This can 
be understood most easily by considering the relaxation process 
essentially as an expansion or a contraction.' In fact, the 
introduction of a scaling factor X can account for more than 
95% of the relaxation effects on V or T while at  the same time 
reconciling the results with the virial theorem. Figure 2 shows 
the evolution of E, T, and Vas a function of the scaling factor 
A. As a consequence of the variation principle, a small change 
in X will not affect E in the neighborhood of its minimum, 
while the T and V components are very sensitive-but 
compensating-functions of A. Near the energy minimum, 
dE/dh E 0 and dV/dX E -dT/dX N V. 

Calculation of Spin-Pairing Energies. In order to come as 
close as possible to the perturbation approach**' of Jprrgensen 
and Slater, it is indicated to solve the Hartree-Fock equations 
for the weighted mean of the multiplets characterized by a 

_I 30 

E n e r g y  
d i f f e r e n c e  
( i n  k K 1  

t 

I- 

t 
-30 t- 
Figure 3. Variation of the Hartree-Fock spin-pairing energy D'= 
[E'@ - 1) - E'(S)] /2S and its components for the dipositive ions 
of the first transition series ( j~ = 2) as a function of Z, or q = Z - 
p -  18. 

given spin quantum number and to obtain the energy E'(S). 
For instance in the case of 3d2, it should be sufficient to carry 
out two separate SCF calculations, one for E'( l), the weighted 
average of 3F and 3P, and another one for E'(O), the weighted 
average of 'D, 'G, and 'S. In general AE' = E'(S - 1) - E'@), 
AL'= L'(S - 1) - L'(S), etc. Figure 3 and Table I1 show the 
variation of AE'/2S, AL'/2S, AT'/2S, and AC'I2S as a 
function of 2 for the dipositive ions of the first transition series. 
If the number of d electrons is denoted by q, and the degree 
of ionization by p ,  Figures 3 and 4 are characterized by p = 
2 and q = Z - 20. Figure 4 offers an alternative representation 
of the total energy differences AE'. It is possible to maintain 
eq 1 at the SCF level so that AE'/2S can be considered as the 
Hartree-Fock value of the spin-pairing energy D'. 
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Figure 4. Hartree-Fock spin-flip energy differences AE’ = E’(S - 
1) - E’(S) for the dipositive 3d4 systems. 

First of all, it should be stressed that the so calculated D’ 
values agree fairly well with the semiempirical data based on 
eq 2. While the range in Figure 3 is from 6430 cm-’ for Ti2+ 
to 9560 cm-I for Ni2+, the corresponding experimental curve1* 
runs smoothly parallel from 5420 cm-’ for Ti2+ to 8660 cm-’ 
for Ni2+. 

This implies in the first place that the calculated D’values 
are all positive, which was not a priori obvious since D’is now 
composed of AL’, AC’, and AT’ contributions. I t  means 
that-also at  the Hartree-Fock l eve l sp in  pairing is an en- 
ergy-requiring process. This conclusion was to be anticipated 
from the results obtained for the Ti2+ example. Indeed, using 
frozen orbitals of the configuration average 3dq (introduced 
in the previous section), it is possible to calculate (albeit 
somewhat less accurately) the average energy of the terms with 
spin S. The so-obtained energy will be denoted E(S)  in order 
to distinguish it from E’(S), the result of the direct Hartree- 
Fock solution. In analogy to the results for Ti2+ (Table I), 
one finds E ( S )  N E’(S), and E(S - 1) N E’(S - 1): the 
relaxation from the (global) configuration average to the 
(partial) average of the states with constant spin is negligible. 
For E(S - 1) and E(S) ,  eq 1 and 2 apply and therefore AE’ 
N AE > 0. 

For the same reason, the two D’values of d4, dS, and d6 
corresponding to the transitions (S - S - 1) and (S - 1 - 
S - 2)  are very nearly identical (Table 11, Figure 3). The 
proportionatlity of AE and S, implied by eq 1, can be trans- 
ferred to the Hartree-Fock values AE‘ without a significant 
loss of accuracy. 

Analysis of the Spin-Pairing Energy Components. While 
the frozen-orbital calculations are characterized by AT = AL 
= 0 and AC = A E  > 0, Figure 3 shows the mirror symmetry 
between the AE’ and AT‘ curves, as imposed by the virial 
thereom. The most remarkable result, however, is that AC’ 
is negative throughout. All the dipositive transition-metal ions 

(12) Sugano, S.; Tanabe, Y.; Kamimura, H. ‘Multiplets of Transition Metal 
Ions in Crystals”; Academic Press: New York, 1970. 
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Table 111. Orbital Radii ri (au) of the Core and Valence 
Orbitals of the Til’ Ion 

S = l  s= 0 3d2 av 

1s 0.070 116 0.070 116 0.070 116 
2s 0.325 062 0.325 058 0.325 061 
2p 0.289562 0.289 555 0.289 560 
3s 1.014 406 1.013583 1.014 132 
3p 1.089389 1.088 093 1.088 958 
3d 1.392461 1.422 261 1.402 201 

apparently behave in a nonconventional way: the interelec- 
tronic repulsion increases with S. In this sense, the transition 
metals are different from the first-row elements considered 
in ref 4-8, where the unexpected repulsion differences were 
observed for the neutral atoms but not for the dipositive or 
higher positive ions. 

Therefore, in the transition-metal ions under consideration, 
spin pairing does require a positive energy; however, this energy 
is not a repulsion energy, but it is predominantly a nuclear- 
attraction energy. Indeed, since AE’> 0, AC‘ < 0, and AT’ 
< 0, AL‘ has to be positive and dominant. 

For d4, dS, and d6 ions, let us denote the two relevant 
transitions by A(S - S - 1) and B(S - 1 - S - 2) .  From 
the virial theorem A E i  = -AT‘A, AE’B = -AT‘,. Since 
AE‘,/2S N AEtB/2(S  - l),  one also ha5 ATl , /2S  N 

AT’B/2(S - 1) and the two AT‘ points are very nearly su- 
perposed in Figure 3 (within a few hundred reciprocal cen- 
timeters). So would A V ’ & S  and AV$/2(S - l), but the vinal 
theorem by itself does not require the superposition of the two 
points for the repulsion and the attraction components sepa- 
rately. The fact that this nevertheless is found to be the case 
(Figure 3) can most easily be understood from the Hell- 
mann-Feynman theorem. If the nuclear charge is allowed to 
be variable, one has for any given metal ion, and for the three 
cases (S, S - 1, S - 2) 

dE’/dZ = L ’ / Z  

and, hence, for both A and B 
dAE’/dZ = AL’/Z 

Since AEiI2S  N AEk/2(S - 1) for all Z ,  the derivatives will 
also be equal and therefore 

AL1,/2S A L ’ B / ~ ( S  - 1) t 3a) 

A c ‘ ~ / 2 s  N- A C ’ B / ~ ( S  - 1) (3b) 

A remarkable aspect of eq 3b is its formal equivalence to the 
frozen-orbital expression ACA/2S = ACB/2(S - 1). Yet A c  
and AC’ have opposite sign, and numerically, they differ by 
a factor 2-3. 

Interelectronic Repulsion Components. Figure 5 and Table 
I1 show a further breakdown of AC’into its components: ACbd 
is the repulsion associated with the 3d4 occupation only, ACl, 
is the intracore repulsion, and AC& is the intershell repulsion 
between core and d electrons. The following points may be 
noticed. 

(i) A c i d  > 0. The d-d repulsion plays the key role in the 
frozen-orbital calculations, where A E  = AC = ACdd > 0 and 
ACc = ACd = 0. So at least ACdd and AChd have the same 
sign. The commonly accepted idea that the d-d repulsion 
increases with decreasing S remains valid; it is connected to 
the differential exchange correlation, associated with spin 
change. It should be stressed, however, that Achd is nu- 
merically the smallest component of AC’. 

(ii) AC; > 0. The intracore repulsion, which is unchanged 
in the frozen-orbital approximation, increases with decreasing 
S.  Spin pairing thus induces a core contraction; this conclusion 
is confirmed by a calculation of the average radius of the core 
orbitals (Table 111). 
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interelectronic repulsion that the relative order of the total 
repulsion does get reversed: while C(Smi,) > C(3dq) before 
relaxation, C’(S,,) < C(3d4) after relaxation. Although the 
Pauli correlation is minimal for Smin, relaxation effects will 
operate in such way that the average interelectronic separation 
will be larger for Smin. 

Precisely the opposite behavior is observed for S,,,, the 
largest possible spin value. In that case E(S,,,) < E(3d9, 
and the relaxation process from the configuration average to 
the high-spin states can be adequately described by a 3d 
contraction, accompanied by a limited core expansion. The 
3d contraction again attenutates the originally imposed de- 
crease in d-d repulsion, without inverting the relative order: 
for the total repulsion on the contrary, the order is inverted, 
and C’(Smax) > C(3d4) > C’(Smin). 

For intermediate spin states, contraction or expansion is 
observed, depending on the relative value of E(S) and E(3d4). 

The detailed description of the relaxation process shows why 
the spin-pairing energies in Figure 3 are always larger than 
the repulsion energy differences AChd/2S in Figure 5. Indeed 

2SD’= AE’ E AE = AC = Acdd> ACh, 

The latter inequality represents the attenuation of the d-d 
repulsion increase in the transition S - S - 1 .  

For d4, d5, and d6 systems, the different components of 
AC’/2S remain superposed (or very nearly so) for the two 
transitions involved (denoted A and B in the previous section): 

rationalized to some extent by considering the relaxation as 
a simple scaling process (expansion from S to S - 1 to S - 2). 
Then it is not difficult to showI3 that the scaling parameters 
XA and AB are given by XA N 1 - ( D / T ) S  and XB 1 - 
( D / T ) ( S  - 1 ) ;  hence 

( A C $ ~ ) A / ~ S  N ( A C $ ~ ) B / ~ ( S  - I ) ,  etC. This result Can be 

(4) 
(AcLd>A 2SD(l  - (cdd/2r>> 

(Achd)s E 2(s - 1)D(1 - (Cdd/2T)) 

In these equations the first term is simply the d-d repulsion 
difference, calculated from the frozen orbitals of the 3d4 av- 
erage, that is, (ACdd)A or (Acdd)B; the second term is the 
relaxation energy. Therefore, in the scaling approximation, 
the relaxation energy is simply proportional to the first-order 
energy differences AEA N AEA and AEB N AE’B and 

-10 1- 

t Ac;, 

Figure 5. Decomposition of the interelectronic repulsion energy 
differences AC’as a function of Z for the dipositive ions of the first 
transition series. ACbd refers to the repulsion associated with the 3d4 
occupation only, AC: to the intracore repulsion, and A C d  to the 
intershell repulsion between core and d electrons. The AC’/2S curve 
is identical with the one in Figure 3. 

(iii) ACLd < 0. The intershell repulsion (also unchanged 
in the frozen-orbital approximation) strongly decreases with 
decreasing S. In fact, ACl, is by far the leading term in A C  
it is roughly three times larger than the other two terms to- 
gether. Part of this effect is related to the core contraction, 
but the main reason for the Cl, decrease is a considerable 
expansion of the 3d orbitals as a consequence of spin pairing. 

Again, this conclusion is confirmed by a calculation of the 
orbital radii. Table I11 shows the results for the TiZ+ ion. 

The observations i-iii are quite similar to what has been 
found in the analysis of first-row atom@ they provide us with 
some insight in the nature of the relaxation process. Suppose 
we start from the average of the 3d4 configuration, charac- 
terized by the orbitals pi and total energy E(3d4). If Smin is 
the lowest possible spin value of this configuration, E(S,i,) 
calculated on the basis of the frozen rpi orbitals will satisfy 

qualities can be expressed in terms of the Racah parameters 
or the Slater-Condon Fk(3d:3d) integrals. 

T h e  relaxation of the vi orbitals to p((Smin) amounts es- 
sentially to an expansion of the 3d orbitals accompanied by 
a (much smaller) core contraction. One of the manifestations 
of the 3d expansion is the decrease of the Fk(3d;3d) repulsion 
integrals. Therefore cdd(smi,,) > Chd(Smin): the repulsion 
increase from cdd(3d4) to Cdd(s,i,), inherent in the frozen- 
orbital calculation, is attenutated by the relaxation process. 
In all cases considered in Figure 5, however, this attenutation 
preserves the relative order of the d-d repulsions, i.e., Cdd(S&) 
> c’&&,,) > cdd(3dq). The expansion of the 3d orbitals also 
withdraws some electron density from the inner-shell region, 
leading to a (rather limited) core contraction. The interplay 
of both effects results in such a significant decrease of the 

E(S,i,) > E(3d4) because Cdd(S,i,) > cdd(3d4). These h e -  

The same conclusion will remain essentially valid for a non- 
uniform scaling (contraction of the core, expansion of the 3d 
shell) or for the exact SCF relaxation. Indeed, Table I1 is in 
rather satisfactory agreement with eq 5. The repulsion energies 
C$(S), Chd(S - l), and Chd(S - 2) can be expressed as linear 
combinations of the Fk(3d;3d) integrals, which we denote Fks, 
Fks-, and Fks-2, respectively. From the data in Table IV, eq 
6 can be verified for all k, in agreement with eq 5 .  

(6) 
(AFk), Fks-, - Fks S 

E -  -- - 
(AFk)B Fks-2 - FkS-] s - 1 

Role of Nuclear Charge 2. If p = 2 (Figure 3), D’ = 
AE’/2S is an increasing function of Z; this can be connected 
to the fact that D’ - D (Table 11). Within the frozen-orbital 

(13) In general, the scaling factor is given by X = -V/2T (see also Figure 
2). In this derivation, one also uses the fact that AC,,, based on the 
orbitals of the configuration average, is not modified significantly when 
one uses another set of orbitals (corresponding to E ( S ) ,  E(S  - I ) ,  or 
E(S - 2)) for both terms of the difference. Indeed, not only M = M’ 
but also AJ? N Us N Us-, ME,,, where the latter three symbols 
denote the energy difference based on the frozen orbitals, corresponding 
to E @ ) ,  E(S - l ) ,  and E(S - 2), respectively. Therefore D D’ = 
Ds E Ds-1 N Ds-2. 



Spin-Pairing Energy in Transition-Metal Ions 

Table IV. Fk(3d;3d) Integrals for the Hartree-Fock Calculations 
Corresponding to S,,, S,,, - 1, S,,, - 2, and the 
Configuration Average for 3d4, 3d5 ,  and 3d6 Systems (in hartrees) 

FO F F 
crz+ s = 2 

S = l  
s=o 
3d4 

MnZt S = ' I 2  
s = 3/12 

s = ' I2  
3d 

Fez+ S = 2  
s =  1 
s=o 
3d6 

0.781 43 
0.770 25 
0.764 62 
0.770 25 
0.838 76 
0.828 03 
0.821 55 
0.824 43 
0.884 42 
0.877 47 
0.873 98 
0.877 47 

0.363 55 0.226 57 
0.356 45 0.221 77 
0.352 89 0.219 36 
0.356 45 0.221 77 
0.390 19 0.243 16 
0.383 33 0.238 5 1 
0.379 20 0.235 72 
0.381 04 0.236 96 
0.409 51 0.254 82 
0.405 05 0.25 1 80 
0.402 82 0.250 29 
0.405 05 0.251 80 

0 I I I I I C  
V0 c f M n2* F.h CO'* 

Figure 6. Evolution of the Hartree-Fock spin-pairing energy D' = 
[E'(S - 1) - Ef(S)] /2S and its components for the 3d5 ions (q = 5 )  
as a function of Z, or p = Z - q - 18. 

approximation, D is given by one single parameteric expression 
for all Z (eq 2) .  Since the Fk(3d;3d) integrals for the con- 
figuration average are increasing functions of Z (see also Table 
111), the conventional approach' predicts that 

Acdd/2s = AC/2S = Ah?/2s 

will increase with Z .  
From the preceding sections, it now appears that the D' 

evolution should be interpreted in a very different way. Indeed, 
the Hartree-Fock calculations reveal (Figure 5, Table 11) that 
the d-d repulsions AChd decrease with 2. This can be un- 
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Figure 7. Decomposition of the interelectronic repulsion energy 
differences AC' as a function of Z or p for q = 5 .  The ACf/2S curve 
is identical with the one in Figure 5 .  

derstood by looking at the detailed  expression^'-^ for c d d  as 
a function of the Fk integrals: 

cdd = 
(4(4 - 1)/2)P + [3/q - 2 1 / 6 0 d 4  -1)ID - S(S + 1)D 

If the specific set of Fk integrals, obtained for a given value 
of S,  are again denoted Ps and if further Ds = 5/84(F$ + Ps), 
AFk = FkS-' - Fks, and AD = D,, - Os, one obtains eq 7.  

AChd = c',d(s - 1) - C'dd(S) = (q(q - 1 ) / 2 ) A P  + 
13/44 - '1/604(4 - l ) ] A D  - s(s- 1)AD + 2SDs ( 7 )  

The last term in eq 7 corresponds to the difference in d-d 
repulsion, calculated from the frozen orbitals of the S mul- 
tiplets: one has') 2SDs - 2SD = ACdd. The other terms of 
eq 7 describe the relaxation within the d shell; A P  and AD 
are negative and correspond to the attenuation of the d-d 
repulsion (discussed in the previous section). In the relaxation 
term 1API >> IADI, and the dominant contribution is pro- 
portional to q(q - 1). This explains the decrease of the d-d 
repulsion from Ti2+ to Ni2+, in spite of the increase of all the 
Fk(3d;3d) integrals. Therefore, the curves of Acdd/2s N 

AE'/2S (Figure 3) and AChd/2S (Figure 5) as a function of 
Z are divergent. 

If one keeps the number of d electrons constant, while 
varying the degree of ionization, p ,  one obtains a somewhat 
different situation, which is exemplified in Figure 6 and 7 for 
the q = 5 case. The basic pattern of Figures 3 and 5 is 
confirmed, although there are a few points that require ad- 
ditional comment. 

In the first place, since both figures refer to d5 systems, one 
has to consider two transitions: A(5/z - 3 / 2 )  and B(3/2 - 
'I2). In fact, all the points on both figures are very nearly 
the superpositions of two points: the difference between the 
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two relevant D’values is always of the order of 100 cm-I. 
In Figure 5, the evolution of the three energy components 

AL’, AC‘, and AT‘as a function of Z is completely determined 
by the AE’(2) curve. Indeed, since the number of electrons 
is constant, the combination of the virial theorem and the 
Hellmann-Feynman theorem imposes unambiguous relations 
between the three energy components. 

It has been shown6,’ that the conventional behavior (AC > 
0) tends to reappear at  increasing degree of ionization (also 
evident from Figure 5). Yet, the present calculations show 
that even for Co4+, AC’ remains negative and rather large in 
absolute value (of the order of several electronvolts). 

The slope of D’as a function of Z is roughly 3 times larger 
in Figure 6 than in Figure 3. An increase of the slope is to 
be expected from conventional arguments’ although, again, 
the interpretation of this phenomenon is definitely more 
complex. 

The most striking difference between Figures 5 and 7 is the 
sign inversion in the slope of A c i d  as a function of 2. In the 
present case (q  = 5 ) ,  the curves AChd/2S and AE‘/2S N 

Acdd/2s do not diverge but rather they are roughly parallel. 
The reason is immediately obvious from eq 7, where the 
dominant relaxation term q(q - 1)AF‘/2 now only varies on 
account of AF‘, which is not a very sensitive function of 2. 
In fact for neutral V, one calculates a negative value of A c i d :  
the absolute value of the relaxation energy exceeds the classical 
repulsion increase. As a consequence, one obtains the rather 
exceptional case where the repulsion decreases even within the 
3d shell. 

Finally, a third way to investigate the role of 2 is to modify 
the principal quantum number n. A number of example 
calculations for both di- and tripositive ions show that the same 
basic conclusions remain valid in this case. 
Concluding Remarks 

For a number of typical transition-metal ions, the 
Hartree-Fock spin-pairing energy has been shown to consist 
essentially of nuclear-attraction contributions and much less 
of electron-repulsion contributions (see Figures 1 and 3). As 
a matter of fact, spin pairing, the transition from t f  to t i ,  is 
characterized by a decrease of the electronic repulsion. From 
the analogy with the results obtained for the first-row atoms 
and ions: it may be conjectured that our conclusions are valid 
for all chemically relevant transition-metal ions-not only at 
the Hartree-Fock level but probably also for the exact solu- 
tions. 

2. The connection with first-order perturbation theory can 
be made by calculating the different term energies and their 
spin averages E ( S )  on the basis of the frozen orbitals of the 
configuration average. 

Apparently, the success of conventional multiplet theory 
rests on the fact that the relaxation energy E’(S) - E ( S )  is 
negligibly small. Because of this fact, the classical theory does 
have a predictive value: the sign, the magnitude, and the 
evolution of the spin-pairing energy as a function of p ,  q, or 
Z are all correctly predicted. Moreover, the dependence of 
the Fk(3d;3d)  integrals of these same variables is also quali- 
tatively as expected from simple shieldings considerations. Yet, 
at the Hartree-Fock level, both facts are not just cause and 
effect, as they are in conventional multiplet theory. Rather 

1. 

Vanquickenborne and Haspeslagh 

they are interrelated in a much more intricate manner, leading 
to a very different interpretation of the spin-pairing energy. 
In fact, for a constant degree of ionization, the classical Acdd 
increases with 2, while the Hartree-Fock A c i d  decreases with 
2 (Figures 3 and 5). 

3. For q = 4-6, the energies AE; and AEL, as well as their 
different components, are very nearly in the ratio S/(S - 1). 
The reason for this fact was not obvious from a direct Har- 
tree-Fock treatment. It is apparently profitable to start from 
the less accurate theory where eq 1 and 2 are readily deduced; 
at the SCF level, the near validity of eq 1 has been shown to 
entail a whole series of near equalities 

AE; AT; ALIA AC’A (AChd)A AFk, 
AE’B AT‘B AL’B A c $  (AChd)B AFkB 

N - N - N - N -  N - = -  

(Ac$)A (Ac&)A AEA AcA (Acdd)A s N - = - - - = -  - 
(Ac$)B (Ac$)B AEB AcB (Acdd)B s -  1 

E- 

Particularly remarkable in this sequence is AC’A/ACfB N 

ACA/ACB where the primed (Hartree-Fock) and unprimed 
(conventional) quantities are of different sign! 
4. In principle, the considerations on the f i ’ A / h E $  ratios 

might also be applied to other parts of multiplet theory where 
certain definite energy ratios are predicted. For instance, in 
the 2p2 configuration, the ratio [E(IS) - E(’D)]/[E(’D) - 
E ( 3 P ) ]  is predicted to equal 312. 

From the previous considerations, one should expect nearly 
the same ratio for the Hartree-Fock energy differences and 
their components. In principle this is true, but the numerical 
errors amount to -5% for AE’and up to -20% for certain 
components. The reason why the agreement is much less 
satisfactory than for the spin-pairing results is connected to 
the fact that E’(S), E’(S - l ) ,  etc. are themselves (partial) 
averages; the errors on the individual terms will tend to cancel. 

5. The correct interpretation of AE’as a combination of 
one- and two-electron energy differences leads to a picture 
which is quite different from the conceptual frame offered by 
the classical theory. Within this frame, which is also the basis 
for ligand field theory, it seemed very natural to connect the 
nephelauxetic effect in metal complexes to the decreased re- 
pulsion accompanying the d-orbital c~valency . ’~  This in- 
terpretation has already been questioned on the basis of direct 
ab initio calculations on octahedral c~mplexes . ’~  From the 
present point of view, a connection between reduced term 
separations and d-d repulsions or covalency cannot really be 
expected in the first place. 
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